

LA-UR-19-22129

Approved for public release; distribution is unlimited.

Title: The Exciting World of Microcalorimetry

Author(s): Kossmann, Shannon Elizabeth

Intended for: Undergraduate school (Dartmouth) presentation

Issued: 2019-03-11

The Exciting World of Microcalorimetry

Shannon Kossmann

7 March 2019

Exciting World of Microcalorimetry

Spectrum from Mike Yoho

UNCLASSIFIED

Energy (keV)

resolution of peaks

analysis

important for isotopic

Exciting World of Microcalorimetry

EST. 1943 ---

Microcalorimeter gamma spectroscopy allows for resolution of peaks important for isotopic analysis

Spectrum from Mike Yoho

Los Alamos
NATIONAL LABORATORY
FST. 1943

- $E = C \times \Delta T$

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-26714

Microcalorimeters measure changes in energy as a change in temperature

Photo credit: Mark Croce

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-26714

Transition-Edge Sensors register a small change in temperature as a measureable change in resistance

https://www.researchgate.net/figure/Illustrative-plot-of-resistance-vs-temperature-for-a-superconductor-The-transition-is fig4 228440334

 $\Delta E \to \Delta T \to \Delta R \to \Delta I$

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-26714

https://commons.wikimedia.org/wiki/File:Ohms_law_voltage_source.svg

By Ohm's Law with a constant voltage and a change in resistance, the current must change

 $\Delta E \to \Delta T \to \Delta R \to \Delta I$

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-26714

The height of each pulse is proportional to the energy of the photon

A Bit More Complicated

ROACH

https://slideplayer.com/slide/9354851/

Cryostat

Photo credit: Mark Croce

Frequency-domain multiplexing is used to facilitate readout of an array of pixels

Detector Package

Photo credit: Mark Croce

The Physical Instrument

Photo credit: Mark Croce
UNCLASSIFIED

Microcalorimeter User Manual

Shannon Kossmann, Katrina Koehler, and Mark Croce March 5, 2019

Contents

1	Initial Setup	2	
2	Cool Down	3	
3	Taking Measurements	5	
4	Turn on ROACH	7	
5	Start Server	12	
6	Start Matter	13	
7	IQ Calibrate	14	
8	IV Curves	14	
9	Group Trigger	15	
10	Noise Data	16	

Cool down and ADR magnetization cycle

Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2)

Take IV curves

ADR magnetization cycle

ADR magnetization cycle Warm up

3-4 weeks

UNCLASSIFIED

1 week

Cool down and ADR magnetization cycle

Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2)

Take IV curves

ADR magnetization cycle

ADR
n magnetization
cycle
1 week

Warm up

3-4 weeks

Cool down and ADR magnetization cycle

Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2)

Take IV curves ADR magnetization cycle

ADR magnetization cycle

Warm up

3-4 weeks

UNCLASSIFIED

1 week

Warm up

Cool down and ADR magnetization cycle

Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2)

IV curves

ADR magnetization cycle

ADR magnetization cycle

1 week

3-4 weeks

Cool down and ADR magnetization cycle

Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2)

Warm up

Take IV curves

ADR magnetization

ADR magnetization cycle

1 week

3-4 weeks

Cool down and ADR magnetization cycle

Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2)

Take IV curves

ADR magnetization cycle

ADR magnetization cycle

1 week

3-4 weeks

Cool down and ADR magnetization cycle

Tuning ROACH probe tones and data collection (x2)

Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2)

Warm up

Take IV curves

ADR magnetization

ADR nagnetization cycle

1 week

3-4 weeks

Running the Instrument

Operating temperature (80mK)

Running the Instrument

Temperature/vibrational stability

Temperature and vibrational stability remain a challenge because of microcalorimeter sensitivity

Cool down and ADR magnetization cycle

Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2) Tuning ROACH probe tones and data collection (x2)

Take IV curves

ADR magnetization cycle

ADR magnetization cycle

Warm up

3-4 weeks

UNCLASSIFIED

1 week

Running the Instrument

Determining the TES bias value

https://www.researchgate.net/figure/Illustrative-plot-of-resistance-vstemperature-for-a-superconductor-The-transition-is fig4 228440334 The bias point is chosen low on the superconductingnormal transition edge

Warm up

Cool down and **ADR** magnetization cycle

Tuning ROACH probe tones and data collection (x2)

Tuning ROACH probe tones and data collection (x2)

Tuning ROACH probe tones and data collection (x2)

Take IV curves

ADR magnetization cycle

ADR magnetization cycle

3-4 weeks

UNCLASSIFIED

1 week

Checking ROACH generated probe tones

Each arc represents one pixel

Checking ROACH generated probe tones

Making a Spectrum

Data saved! Now what?

Cut bad pulses and bad channels

CD 247 Wide Energy Range 10⁵ 10 Counts / Bin 10³ 10² 101 10° 0 Filtered Pulse Height (arb.) Narrow Energy Range **Highest Peak** 10⁵ 35000 $E/\Delta E = 926$ (Predicted 1195) 30000 104 Counts / Bin Bi. 25000 10³ Counts / 20000 15000 10² 10000 101 5000 10° 0.0010.0020.0030.0040.0050.0060.007 1.00 1.02 0.96 0.98 1.04 Filtered Pulse Height (arb.) Filtered Pulse Height+(9r96)e-1 Pretrigger Mean vs Time p_pretrig_mean (Φ₀) 4.50 4.48 4.46 4.44 4.42 10 20 30 40 50 0 60 70 Time (h) Filtered Pulse Height vs Time (at Highest Peak) Filtered Pulse Height (arb.) 0.007 0.006 0.005 0.004 0.003 0.002 0.001 20 30 70 10 40 50 60

Information is

compiled for each

pixel individually

Making a Spectrum

Every pixel is different

Eliminate double peaks

Making a Spectrum

Co-57 + Ho-166m

Spectra from Mike Yoho

Low-burnup plutonium (PIDIE 6-1)

Parameter at 129.294 keV Average Co-added FWHM [keV] 0.070 0.069 FWTM [keV] 0.13 0.14

Energy resolution is not degraded by adding pixels

High-burnup plutonium (PIDIE 6-6)

Parameter at 129.294 keV Average Co-added FWHM [keV] 0.096 0.089 FWTM [keV] 0.19 0.20

Resolution Changes

Co-57 + Ho-166m

PIDIE 6-6

PIDIE 6-1

-0.01 -0.005 0 0.005

Change (keV)

FWTM change FWHM change

Co-57 + Ho-166m

Parameter at 80.57 keV Average Co-added FWHM [keV] 0.068 0.066 FWTM [keV] 0.13 0.13

Data provided by Mike Yoho

Making a Spectrum

Energy Calibration

Peaks from Ta and Sn to energy calibrate spectrum without knowing source

https://www.vectorstock.com/royalty-free-vector/periodic-table-element-tantalum-icon-vector-20585357

Making a Spectrum

High-burnup plutonium, ~26% ²⁴⁰Pu (CBNM 61)

Conclusion

- Energy of absorbed particles recorded as pulses
- Frequency-domain multiplexing for readout of pixel array
- Good pulses used to create histogram
- Co-add pixels
- Energy calibrate
- Best spectra

Low-burnup plutonium, ~6% ²⁴⁰Pu (PIDIE 6-1)

Spectrum from Mike Yoho